Thread Rating:
  • 0 Vote(s) - 0 Average
  • 1
  • 2
  • 3
  • 4
  • 5
Little Shop of Horrors: A Moving Plot of an other-world's unmanned land...
#11
Arrow
Quote:This could likely CLEAN toxic water and at least make hydrogen fuel anywhere, on Earth, Mars, Moon or simply in space.

A self-filling hydrogen gas station in space. 
Kewl line of articles, keep em coming.   
I hope to refuel my 8 quad likely another two weeks at this rate.
Bob..


bio-punk or steam-punk ?



Steam-propelled spacecraft prototype can theoretically explore celestial objects "forever"
January 11, 2019 by Zenaida Gonzalez Kotala, University of Central Florida

[Image: steampropell.jpg]
Credit: NASA
Using steam to propel a spacecraft from asteroid to asteroid is now possible, thanks to a collaboration between a private space company and the University of Central Florida.




UCF planetary research scientist Phil Metzger worked with Honeybee Robotics of Pasadena, California, which developed the World Is Not Enough spacecraft prototype that extracts water from asteroids or other planetary bodies to generate steam and propel itself to its next mining target.

UCF provided the simulated asteroid material and Metzger did the computer modeling and simulation necessary before Honeybee created the prototype and tried out the idea in its facility Dec. 31. The team also partnered with Embry-Riddle Aeronautical University in Daytona Beach, Florida, to develop initial prototypes of steam-based rocket thrusters.

"It's awesome," Metzger says of the demonstration. "WINE successfully mined the soil, made rocket propellant, and launched itself on a jet of steam extracted from the simulant. We could potentially use this technology to hop on the Moon, Ceres, Europa, Titan, Pluto, the poles of Mercury, asteroids—anywhere there is water and sufficiently low gravity."

WINE, which is the size of a microwave oven, mines the water from the surface then makes it into steam to fly to a new location and repeat. Therefore, it is a rocket that never runs out of fuel and can theoretically explore "forever."

The process works in a variety of scenarios depending on the gravity of each object, Metzger says. The spacecraft uses deployable solar panels to get enough energy for mining and making steam, or it could use small radiosotopic decay units to extend the potential reach of these planetary hoppers to Pluto and other locations far from the sun.

Metzger spent three years developing technology necessary to turn the idea into reality. He developed new equations and a new method to do computer modeling of steam propulsion to come up with the novel approach and to verify that it would actually work beyond a computer screen.

[Image: 1-steampropell.jpg]
By using steam rather than fuel, the World Is Not Enough (WINE) spacecraft prototype can theoretically explore “forever,” as long as water and sufficiently low gravity is present. Credit: University of Central Florida

The development of this type of spacecraft could have a profound impact on future exploration. Currently, interplanetary missions stop exploring once the spacecraft runs out of propellant.

"Each time we lose our tremendous investment in time and money that we spent building and sending the spacecraft to its target," Metzger says. "WINE was designed to never run out of propellant so exploration will be less expensive. It also allows us to explore in a shorter amount of time, since we don't have to wait for years as a new spacecraft travels from Earth each time."



The project is a result of the NASA Small Business Technology Transfer program. The program is designed to encourage universities to partner with small businesses, injecting new scientific progress into marketable commercial products.

"The project has been a collaborative effort between NASA, academia and industry; and it has been a tremendous success," says Kris Zacny, vice president of Honeybee Robotics. "The WINE-like spacecrafts have the potential to change how we explore the universe."

The team is now seeking partners to continue developing small spacecraft.

Metzger is an associate in planetary science research at UCF's Florida Space Institute. Before joining UCF, he worked at NASA's Kennedy Space Center from 1985 to 2014. He earned both his master's (2000) and doctorate (2005) in physics from UCF. Metzger's work covers some of the most exciting and cutting-edge areas of space research and engineering. He has participated in developing a range of technologies advancing our understanding of how to explore the solar system. The technologies include: methods to extract water from lunar soil; 3-D printing methods for structures built from asteroid and Martian clay, and lunar soil mechanic testers for use by gloved astronauts.

Honeybee Robotics, a subsidiary of Ensign Bickford Industries, focuses on developing drilling tools and systems for finding life as well as for space mining for resources. Honeybee has previously deployed and operated Rock Abrasion Tool (RAT) on Mars Exploration Rovers (MER), Icy Soil Acquisition Device (ISAD) on Mars Phoenix, and Sample Manipulation System (SMS) for the Sample Analysis at Mars (SAM) instrument on the Mars Science Laboratory (MSL). The MSL also has Honeybee's Dust Removal Tool. Current flight and R&D projects include systems for Mars, the Moon, Europa, Phobos, Titan, and others.

[Image: 1x1.gif] Explore further: Professor hopes key to deep-space exploration is the moon

Provided by: University of Central Florida


more wine?

Mobile self planting units will be self supplying supplanters.  To koine a phrase:

Inter-Planet "Plantagenet-Assists"
[Image: f73d5820707394c98d0cb16498435bfa--sweet-...coleus.jpg]
Like a Vine on wheels.,,only in space as well. Doh
Quote:Quote:
If a plant can be a bio-electric hybrid...what else can it be hacked with?




JANUARY 11, 2019
Technique identifies electricity-producing bacteria
by Massachusetts Institute of Technology
[Image: techniqueide.jpg]A microfluidic technique quickly sorts bacteria based on their capability to generate electricity. Credit: Qianru Wang
Living in extreme conditions requires creative adaptations. For certain species of bacteria that exist in oxygen-deprived environments, this means finding a way to breathe that doesn't involve oxygen. These hardy microbes, which can be found deep within mines, at the bottom of lakes, and even in the human gut, have evolved a unique form of breathing that involves excreting and pumping out electrons. In other words, these microbes can actually produce electricity.

Scientists and engineers are exploring ways to harness these microbial power plants to run fuel cells and purify sewage water, among other uses. But pinning down a microbe's electrical properties has been a challenge: The cells are much smaller than mammalian cells and extremely difficult to grow in laboratory conditions.
Now MIT engineers have developed a microfluidic technique that can quickly process small samples of bacteria and gauge a specific property that's highly correlated with bacteria's ability to produce electricity. They say that this property, known as polarizability, can be used to assess a bacteria's electrochemical activity in a safer, more efficient manner compared to current techniques.
"The vision is to pick out those strongest candidates to do the desirable tasks that humans want the cells to do," says Qianru Wang, a postdoc in MIT's Department of Mechanical Engineering.
"There is recent work suggesting there might be a much broader range of bacteria that have [electricity-producing] properties," adds Cullen Buie, associate professor of mechanical engineering at MIT. "Thus, a tool that allows you to probe those organisms could be much more important than we thought. It's not just a small handful of microbes that can do this."
Buie and Wang have published their results today in Science Advances.
Just between frogs
Bacteria that produce electricity do so by generating electrons within their cells, then transferring those electrons across their cell membranes via tiny channels formed by surface proteins, in a process known as extracellular electron transfer, or EET.
Existing techniques for probing bacteria's electrochemical activity involve growing large batches of cells and measuring the activity of EET proteins—a meticulous, time-consuming process. Other techniques require rupturing a cell in order to purify and probe the proteins. Buie looked for a faster, less destructive method to assess bacteria's electrical function.

For the past 10 years, his group has been building microfluidic chips etched with small channels, through which they flow microliter-samples of bacteria. Each channel is pinched in the middle to form an hourglass configuration. When a voltage is applied across a channel, the pinched section—about 100 times smaller than the rest of the channel—puts a squeeze on the electric field, making it 100 times stronger than the surrounding field. The gradient of the electric field creates a phenomenon known as dielectrophoresis, or a force that pushes the cell against its motion induced by the electric field. As a result, dielectrophoresis can repel a particle or stop it in its tracks at different applied voltages, depending on that particle's surface properties.
Researchers including Buie have used dielectrophoresis to quickly sort bacteria according to general properties, such as size and species. This time around, Buie wondered whether the technique could suss out bacteria's electrochemical activity—a far more subtle property.
"Basically, people were using dielectrophoresis to separate bacteria that were as different as, say, a frog from a bird, whereas we're trying to distinguish between frog siblings—tinier differences," Wang says.
An electric correlation
In their new study, the researchers used their microfluidic setup to compare various strains of bacteria, each with a different, known electrochemical activity. The strains included a "wild-type" or natural strain of bacteria that actively produces electricity in microbial fuel cells, and several strains that the researchers had genetically engineered. In general, the team aimed to see whether there was a correlation between a bacteria's electrical ability and how it behaves in a microfluidic device under a dielectrophoretic force.
The team flowed very small, microliter samples of each bacterial strain through the hourglass-shaped microfluidic channel and slowly amped up the voltage across the channel, one volt per second, from 0 to 80 volts. Through an imaging technique known as particle image velocimetry, they observed that the resulting electric field propelled bacterial cells through the channel until they approached the pinched section, where the much stronger field acted to push back on the bacteria via dielectrophoresis and trap them in place.
Some bacteria were trapped at lower applied voltages, and others at higher voltages. Wang took note of the "trapping voltage" for each bacterial cell, measured their cell sizes, and then used a computer simulation to calculate a cell's polarizability—how easy it is for a cell to form electric dipoles in response to an external electric field.
From her calculations, Wang discovered that bacteria that were more electrochemically active tended to have a higher polarizability. She observed this correlation across all species of bacteria that the group tested.
"We have the necessary evidence to see that there's a strong correlation between polarizability and electrochemical activity," Wang says. "In fact, polarizability might be something we could use as a proxy to select microorganisms with high electrochemical activity."
Wang says that, at least for the strains they measured, researchers can gauge their electricity production by measuring their polarizability—something that the group can easily, efficiently, and nondestructively track using their microfluidic technique.
Collaborators on the team are currently using the method to test new strains of bacteria that have recently been identified as potential electricity producers.
"If the same trend of correlation stands for those newer strains, then this technique can have a broader application, in clean energy generation, bioremediation, and biofuels production," Wang says.
Along the vines of the Vineyard.
With a forked tongue the snake singsss...
Reply


Messages In This Thread
RE: Little Shop of Horrors - by EA - 12-07-2018, 10:35 PM
RE: Little Shop of Horrors - by EA - 12-22-2018, 10:00 PM
RE: Little Shop of Horrors: A Moving Plot of an other-world's unmanned land... - by EA - 01-12-2019, 06:58 AM

Forum Jump:


Users browsing this thread: 1 Guest(s)