Thread Rating:
  • 1 Vote(s) - 5 Average
  • 1
  • 2
  • 3
  • 4
  • 5
Lockheed says makes breakthrough on fusion energy project
#34
Quote:"The lasers vaporize the radioactive material and cause a fusion reaction—
in effect a small thermonuclear explosion," said the article. 
"Hydrogen or helium are the exhaust byproducts, 
which exit the back of the engine under high pressure. Thrust is produced."


They had better have back up standard thrust propulsion on jets that eventually get geared with this technology.

I want a new spacecraft, with advanced nuclear fusion Boeing propulsion systems.
Actually I want better than that,
but I will settle for what Buzz can give away on The Price is Right.
Boeing needs Buzz to market advertise the innovation into practical use.

... and in the future ... on the Price is Right .... it won't be ... "it's a new car!"

"It's a new spaceship!"

http://i.imgur.com/IwOSGpY.jpg[Image: IwOSGpY.jpg]
Reply
#35
Did you know that Buzz wrote a sci-fi novel?

and guess what it's about?




finding alien artifacts in the solar system... well, more than that, but that's the gist


http://www.amazon.com/Encounter-With-Tib...0974776963
On a satellite I ride. Nothing down below can hide.
Reply
#36
(07-14-2015, 02:55 PM)Keith Wrote: Did you know that Buzz wrote a sci-fi novel?

and guess what it's about?




finding alien artifacts in the solar system... well, more than that, but that's the gist


http://www.amazon.com/Encounter-With-Tib...0974776963

Quote from Amazon

ByA customeron January 15, 1998
Format: Mass Market Paperback
I've read a lot of science fiction books over the years, and I can honestly say that this is one of the worst I've ever forced myself to finish. How anyone could read this book and give it a rating above a 2 or a 3 is beyond me. The aliens are upright walking cats and dogs from only 4 light years away who seem to share a lot of the catch phrases and sayings of the current American culture. It was hard to find a coherent sentence on any of the numerous pages. Somewhere an English teacher weeps. Also, the story (if you can call it that) violates Einstein's Theory of Relativity as it applies to major time perception differences between conscious entities aboard objects moving at relativistic speeds and those who aren't moving as fast (fewer years would pass aboard a spaceship moving at 99% of the speed of light than would pass on the crew's home planet). Note to self: "Choose your reading materials more carefully".
Seek and ye shall find. JESUS
------------------------------------------
I am a recovering vegetarian   Hi
Reply
#37
opinions are like assholes, amazon reviews are full of both, bad reviews sometimes cause me to read a book
Quote:One of the Best I've ever read
By John R. Krawczyk II on May 10, 2005
Format: Mass Market Paperback Verified Purchase
In my long and often fruitless search for decent sci-fi once in a while a gem is found. This is one of those cases. Also this book written in '96 predicted a 2nd shuttle accident which of course happened in Feb. 2003. The current science is very well researched and yet also leads us to see how future things may develop. The characters and the plot are very believable: characters and events are subject to wise decisions but also the flaws that exist in even the best people and governments have their part to play.

Not since the original writings of Asimov have I seen such decent and well planed out sci-fi writing.

Note to the 1st reviewer: B. Aldrin has a doctorate in astronautics from MIT. How can he be "in over his head" in writing a sci-fi book???

Split_spawn
On a satellite I ride. Nothing down below can hide.
Reply
#38
remember,
Buzz also has a sense of humor,
something lacking in most NASA scientists groin.

I actually might try that book.
Even if it is bad, it might be funny.

Anything has to be better than the BAE effort in Dr. P's book on Planetary Defense,
for invasion by alien antagonists.
Now that is a really an awful literary attempt to facilitate public funds into space weaponry.

Buzz is alright, NASA and JPL would be boring pit stops for spacecraft without Buzz Aldrin.

Buzz Aldrin is kind of like the ageless boxers Roberto Duran and Sugar Ray Leonard 
... he will 112 years old, 
and still be in the heavyweight boxing champion match for the 16th rematch.

They should send Buzz's ashes to Phobos and plant them next to that monolith, 
when he passes at the age of 164.
Reply
#39
Buzz raps with Snoop Dogg



[Image: snoopbuzzx-topper-medium.jpg]
On a satellite I ride. Nothing down below can hide.
Reply
#40
Lockheed Martin Compact Fusion Reactor Update-
http://nextbigfuture.com/2015/08/lockhee...actor.html


Lockheed Martin Skunkworks is developing a compact fusion reactor concept, CFR. The novel magnetic cusp configuration would allow for stable plasmas in a geometry amenable to economical power plants and power sources. The details of the CFR configuration will be discussed along with a status of the current plasma confinement experiments underway at Lockheed. The presentation will also touch on the potential of a fast development path and challenges to bring such a device to fruition.

The high beta fusion reactor (also known as the 4th generation prototype T4) is a project being developed by a team led by Charles Chase of Lockheed Martin’s Skunk Works. The "high beta" configuration allows a compact fusion reactor design and speedier development timeline.

The chief designer and technical team lead for the Compact Fusion Reactor (CFR) is Thomas McGuire, who did his PhD dissertation on fusors at MIT. McGuire studied fusion as a source of space propulsion in graduate school in response to a NASA desire to improve travel times to Mars.

The project began in 2010.

In October 2014 Lockheed Martin announced that they will attempt to develop a compact fusion reactor that will fit "on the back of a truck" and produce 100 MW output - enough to power a town of 80,000 people.

Lockheed is using magnetic mirror confinement that contains the plasma in which fusion occurs by reflecting particles from high-density magnetic fields to low-density ones.

Lockheed is targeting a relatively small device that is approximately the size of a conventional jet engine. The prototype is approximately 1 meter by 2 meters in size.

[Image: COLL.McGuire-08062015.jpg]





McGuire previously provided some technical and project details in late 2014. MIT Technology Review reports on the skepticism and critics of the Lockheed Martin approach. Ian Hutchinson, a professor of nuclear science and engineering at MIT and one of the principal investigators at the MIT fusion research reactor, says the type of confinement described by Lockheed had long been studied without much success.

McGuire acknowledged the need for shielding against neutrons for the magnet coils positioned inside the reactor vessel. He estimates that between 80 and 150 centimeters of shielding would be needed, but this can be accommodated in their compact design. Researchers contacted by ScienceInsider say that it is difficult to estimate the final size of the machine without more knowledge of its design. Lockheed has said its goal is a machine 7 meters across, but some estimates had suggested that the required shielding would make it considerably larger.

Magnetic Confinement with magnetic mirrors and recirculation of losses

Their magnetic confinement concept combined elements from several earlier approaches. The core of the device uses cusp confinement, a sort of magnetic trap in which particles that try to escape are pushed back by rounded, pillowlike magnetic fields. Cusp devices were investigated in the 1960s and 1970s but were largely abandoned because particles leak out through gaps between the various magnetic fields leading to a loss of temperature. McGuire says they get around this problem by encapsulating the cusp device inside a magnetic mirror device, a different sort of confinement technique. Cylindrical in shape, it uses a magnetic field to restrict particles to movement along its axis. Extra-strong fields at the ends of the machine—magnetic mirrors—prevent the particles from escaping. Mirror devices were also extensively studied last century, culminating in the 54-meter-long Mirror Fusion Test Facility B (MFTF-B) at Lawrence Livermore National Laboratory in California. In 1986, MFTF-B was completed at a cost of $372 million but, for budgetary reasons, was never turned on.

Another technique the team is using to counter particle losses from cusp confinement is recirculation.

Mirror Fusion Test Facility B

The Mirror Fusion Test Facility B followed the earlier Baseball II device, the facility was originally a similar system in which the confinement area was located between two horseshoe-shaped "mirrors". During construction, however, the success of the Tandem Mirror Experiment ("TMX") led to a redesign to insert a solenoid area between two such magnets, dramatically improving confinement time from a few milliseconds to over one second. Parts of the MFTF-B were reused. [A spheromak ignition experiment reusing Mirror Fusion Test Facility (MFTF) equipment].

Other early reports from 2014

[Image: superconrings.jpg]
Superconductors inside magnetic rings will contain the plasma.Credit : Lockheed Martin

Initial work demonstrated the feasibility of building a 100-megawatt reactor measuring seven feet by 10 feet, which could fit on the back of a large truck, and is about 10 times smaller than current reactors.

The Lockheed 100MW compact fusion reactor would run on deuterium and tritium (isotopes of hydrogen).

Instead of the large tokomaks which will take until the mid-2040s or 2050s for the first one and which will be large (30,000 tons) and expensive have one that fit on a truck. Build on a production line like jet engines.

Quote:Aviation Week was given exclusive access to view the Skunk Works experiment, dubbed “T4,” first hand. Led by Thomas McGuire, an aeronautical engineer in the Skunk Work’s aptly named Revolutionary Technology Programs unit, the current experiments are focused on a containment vessel roughly the size of a business-jet engine. Connected to sensors, injectors, a turbopump to generate an internal vacuum and a huge array of batteries, the stainless steel container seems an unlikely first step toward solving a conundrum that has defeated generations of nuclear physicists—namely finding an effective way to control the fusion reaction.

The problem with tokamaks is that “they can only hold so much plasma, and we call that the beta limit,” McGuire says. Measured as the ratio of plasma pressure to the magnetic pressure, the beta limit of the average tokamak is low, or about “5% or so of the confining pressure,” he says. Comparing the torus to a bicycle tire, McGuire adds, “if they put too much in, eventually their confining tire will fail and burst—so to operate safely, they don’t go too close to that.”

The CFR will avoid these issues by tackling plasma confinement in a radically different way. Instead of constraining the plasma within tubular rings, a series of superconducting coils will generate a new magnetic-field geometry in which the plasma is held within the broader confines of the entire reaction chamber. Superconducting magnets within the coils will generate a magnetic field around the outer border of the chamber. “So for us, instead of a bike tire expanding into air, we have something more like a tube that expands into an ever-stronger wall,” McGuire says. The system is therefore regulated by a self-tuning feedback mechanism, whereby the farther out the plasma goes, the stronger the magnetic field pushes back to contain it. The CFR is expected to have a beta limit ratio of one. “We should be able to go to 100% or beyond,” he adds.

The Lockheed design “takes the good parts of a lot of designs.” It includes the high beta configuration, the use of magnetic field lines arranged into linear ring “cusps” to confine the plasma and “the engineering simplicity of an axisymmetric mirror,” he says. The “axisymmetric mirror” is created by positioning zones of high magnetic field near each end of the vessel so that they reflect a significant fraction of plasma particles escaping along the axis of the CFR. “We also have a recirculation that is very similar to a Polywell concept,” he adds, referring to another promising avenue of fusion power research. A Polywell fusion reactor uses electromagnets to generate a magnetic field that traps electrons, creating a negative voltage, which then attract positive ions. The resulting acceleration of the ions toward the negative center results in a collision and fusion.

[Image: Compact%2BFusion%2BReactor%2BDiagram_0.png]

Neutrons released from plasma (colored purple in the picture) will transfer heat through the reactor walls. Credit : Lockheed Martin


[Image: lockheedfusion2.png]

Breakthrough technology: Charles Chase and his team at Lockheed have developed a High Beta configuration, which allows a compact reactor design and speedier development timeline (5 years instead of 30).

* The magnetic field increases the farther that you go out, which pushes the plasma back in.
* It also has very few open field lines (very few paths for the plasma to leak out)
* Very good arch curvature of the field lines
* The Lockheed system has a beta of about 1.
* This system is DT (deuterium - tritium)

[Image: lockheed3.png]
Credit : Lockheed Martin and Google Solve for X

McGuire said the company had several patents pending for the work and was looking for partners in academia, industry and among government laboratories to advance the work.




Currently a cylinder 1 meter wide and 2 meters tall. The 100 MW version would be about twice the dimensions.

[Image: lockheedfusion4.png]
Credit : Lockheed Martin and Google Solve for X

[Image: lockheedfusion5.png.png]
Credit : Lockheed Martin and Google Solve for X



Commercialization Targets for Nuclear Fusion Projects

LPP Fusion (Lawrenceville Plasma Physics) - the target is to make LPP Fusion with a commercial system 4 years after net energy gain is proved. The hop is two years to prove net energy gain. Then 2019-2022 for a commercial reactor (2022 if we allow for 3 years of slippage). They could lower energy costs by ten times.

Lockheed Compact Fusion has a target date of 2024 and made big news recently with some technical details and an effort to get partners.

[Image: fusion1.png]

Helion Energy 2023 (about 5 cents per kwh and able to burn nuclear fission waste)

Tri-Alpha Energy (previously talked about 2015-2020, but now likely 2020-2025)

[Image: fusion2.png]

General Fusion 2023 (targeting 4 cents per kwh)

EMC2 Fusion (Released some proven physics results, raising $30 million)

[Image: fusion3.png]


Dynomak Fusion claims that they will be able generate energy cheaper than coal. They are not targeting commercialization until about 2040.

MagLIF is another fusion project with good funding but without a specific target date for commercialization.

[Image: fusion4.jpg]


There is Muon Fusion research in Japan and at Star Scientific in Australia.
There is the well funded National Ignition facility with large laser fusion and there is the International Tokomak project (ITER).

General Fusion in Vancouver has its funding with Jeff Bezos and the Canadian Government. (As of 2013, General Fusion had received $45 million in venture capital and $10 million in government funding)

IEC Fusion (EMC2 fusion) has its Navy funding (about $2-4 million per year)

As of August 15, 2012, the Navy had agreed to fund EMC2 with an additional $5.3 million over 2 years to work on the problem of pumping electrons into the whiffleball. They plan to integrate a pulsed power supply to support the electron guns (100+A, 10kV). WB-8 has been operating at 0.8 Tesla

Tri-alpha energy has good funding.
As of 2014, Tri Alpha Energy is said to have hired more than 150 employees and raised over $140 million, way more than any other private fusion power research company. Main financement came from Goldman Sachs and venture capitals such as Microsoft co-founder Paul Allen's Vulcan Inc., Rockefeller's Venrock, Richard Kramlich's New Enterprise Associates, and from various people like former NASA software engineer Dale Prouty who succeeded George P. Sealy after his death as the CEO of Tri Alpha Energy. Hollywood actor Harry Hamlin, astronaut Buzz Aldrin, and Nobel Prize Arno Allan Penzias figure among the board members. It is also worth noting that the Government of Russia, through the joint-stock company Rusnano, also invested in Tri Alpha Energy in February 2013, and that Anatoly Chubais, CEO of Rusnano, became a member of the Tri Alpha board of directors

Helion Energy/MSNW has some University funding ( a couple of million or more per year) and NASA has funded one of their experiments

ITER is very well funded but their goal of making massive football stadium sized reactors that have commercial systems in 2050-2070 will not get to low cost, high impact energy.
National Ignition facility is also very well funded but again I do not them achieving an interesting and high impact, lowcost form of energy.

Nuclear fusion is one of the main topics at Nextbigfuture. I have summarized the state of nuclear fusion research before. A notable summary was made three years ago in mid-2010. I believed at the time that there could be multiple successful nuclear fusion project vying for commercial markets by 2018. Progress appears to be going a more slowly than previously hoped, but there are several possible projects (General Fusion, John Slough small space propulsion nuclear fusion system, Lawrenceville Plasma Physics - if they work out metal contamination and other issues and scale power) that could demonstrate net energy gain in the next couple of years.

There will be more than one economic and technological winner. Once we figure out nuclear fusion there will be multiple nuclear fusion reactors. It will be like engines - steam engines, gasoline engines, diesel engines, jet engines. There will be multiple makers of multiple types of nuclear fusion reactors. There will be many applications : energy production, space propulsion, space launch, transmutation, weapons and more. We will be achieving greater capabilities with magnets (100+ tesla superconducting magnets), lasers (high repetition and high power), and materials. We will also have more knowledge of the physics. What had been a long hard slog will become easy and there will be a lot more money for research around a massive industry.

The cleaner burning aspect of most nuclear fusion approaches versus nuclear fission is not that interesting to me. It is good but nuclear fission waste cycle could be completely closed with deep burn nuclear fission reactors that use all of the uranium and plutonium. In China it is straight up engineering questions. So there will be a transition to moderately deeper burn pebble bed reactors from 2020-2035 (starts 2015 but not a major part until 2020) and then a shift to breeders 2030-2050+. There will be off-site pyroprocessing to help close the fuel cycle.

What matters are developments which could radically alter the economy of the world and the future of humanity. The leading smaller nuclear fusion projects hold out the potential of radically lowering the cost of energy and increasing the amount of energy. Nuclear fusion can enable an expansion of the energy used by civilization by over a billion times from 20 Terawatts to 20 Zettawatts. Nuclear fusion also enables space propulsion at significant fractions of the speed of light (1 to 20% of lightspeed.) Earth to orbit launch with nuclear fusion spaceplanes or reusable rockets and trivial access to anywhere in the solar system.

General Fusion targeting commercial reactor for 2023 and funding does not seem to be a problem

General Fusion is trying to make affordable fusion power a reality.

• Plan to demonstrate proof of physics DD equivalent “net gain” in 2013
• Plan to demonstrate the first fusion system capable of “net gain” 3 years after proof
• Validated by leading experts in fusion and industrial engineering
• Industrial and institutional partners
• $42.5M in venture capital, $6.3M in government support

In General Fusion’s design, the deuterium-tritium fuel is supplied as a pair of magnetized plasma rings, known as compact toroids (CT). The CTs are delivered to an evacuated vortex inside a volume of liquid lead-lithium eutectic (atomic percentage ratio 83% Pb, 17% Li; hereafter referred to as Pb-17Li) for the duration of an acoustically-driven spherical collapse. The cavity volume is reduced by three orders of magnitude, raising the plasma density from 10^17 ions/cm3 to 10^20 ions/cm3, the temperature from 0.1 keV to 10 keV, and the magnetic field strength from 2 T to 200 T. The fusion energy will be generated during the 10 µs that the plasma spends at maximum compression, after which the compressed plasma bubble causes the liquid metal wall to rebound. Most energy is liberated as neutron radiation that directly heats the liquid metal. Using existing industrial liquid metal pumping technology the heated liquid metal is pumped out into a heat exchange system, thermally driving a turbine generator. The cooled liquid metal is pumped back into the vessel tangentially to reform the evacuated cylindrical vortex along the vertical axis of the sphere. Liquid Pb-17Li is ideal as a liner because it has a low melting point, low vapor pressure, breeds tritium, has a high mass for a long inertial dwell time, and has a good acoustic impedance match to steel, which is important for efficiently generating the acoustic pulse. The 100 MJ acoustic pulse is generated mechanically by hundreds of pneumatically- 4 driven pistons striking the outer surface of the reactor sphere. The acoustic pulse propagates radially inwards, strengthened by geometric focusing from 1 GPa to 10 GPa at the surface of the vortex.

The previous year (2012) has seen much progress towards creating and compressing plasma and the outlook is now very encouraging. In particular, plasma densities of 1016 ions/cm3 at over 250 eV electron temperatures and up to 500 eV plasma ion temperatures have been demonstrated. Indications are that the formation region of the injector has achieved closed flux surfaces and that these surfaces are maintained during acceleration allowing for adiabatic compression and heating. Piston impact speeds of 50 m/s and servo-controlled impact timing accurate to ±2 µs have been achieved. The 14-piston liquid Pb Mini-Sphere assembly for testing vortex generation and piston impact has been fully commissioned and is collecting data.

General Fusion is buoyed by recent progress on all fronts of the MTF program. Improvements in piston survival, liquid Pb handling, plasma temperature, acceleration efficiency, injector reliability, and regulatory matters have left the team and investors with a positive outlook on the coming year and the company’s ability to meet goals.

General Fusion intends to build a three-meter-diameter steel sphere filled with spinning molten lead and lithium. Super-heated plasma would be injected into the vortex and then the outside of the sphere would be hit with 200 computer-synchronized pistons travelling 100 meters per second (200 mph) The resulting shock waves would compress the plasma and spark a fusion reaction for a few microseconds.

[Image: gfusion9.png]

Tri-alpha Energy - Raised about $140 million + Rusnano investment. Best funded of the smaller players

In 2013, Rusnano Group, a state-owned venture firm, invested an undisclosed amount in Tri-Alpha Energy. The Russian investment is the latest round of financing for Tri-Alpha which, prior to the Rusnano backing, is believed to have raised over $140 million from Goldman Sachs, venture capital firms including Venrock, Vulcan Capital and New Enterprise Associates, Microsoft co-founder Paul Allen, and others.

Tri-alpha revealed some information in a 79 page powerpoint deck in 2012

The design of a 100 MW reactor is underway. Test “shots” to demonstrate plasma confinement are in progress. It is based upon field reversed research but it seems they are migrating towards a pulsed colliding beam approach that looks more similar to Helion Energy. In the picture below, look closely at the cylinder in front of the person. It looks like the Helion Energy design.

[Image: tri-alpha.jpg]

Tri-alpha is still secretive but what has been revealed about progress does not indicate a breakthrough has yet been achieved to net energy gain. Tri-alpha energy has previously talked about getting to a commercial system by 2018.

Helion Energy and MSNW - John Slough Designs

Helion Energy Fusion Engine has received about $7 million in funds from DOE, the Department of Defense and NASA. They had already received $5 million which they used to build a one third scale proof of concept. They raised another $2 million and plan to raise another $35 million in 2015-17, and $200 million for its pilot plant stage.

The MSNW LLC (sister company to Helion Energy working on Space fusion) does refer to the Helion Energy work. MSNW is working on a NASA grant to develop direct nuclear fusion space propulsion. They have said they will demonstrate net energy gain within 6-24 months.

Fusions Assumption:
• Ionization cost is 75 MJ/kg
• Coupling Efficiency to liner is 50%
• Thrust conversation ~ 90%
• Realistic liner mass are 0.28 kg to 0.41 kg
• Corresponds to a Gain of 50 to 500
• Ignition Factor of 5
• Safety margin of 2: GF =GF(calc.)/2

Mission Assumptions:
• Mass of Payload= 61 mT
• Habitat 31 mT
• Aeroshell 16 mT
• Descent System 14 mT
• Specific Mass of capacitors ~ 1 J/kg
• Specific Mass of Solar Electric Panels 200 W/kg
• Tankage fraction of 10% (tanks, structure, radiator, etc.)
• Payload mass fraction =Play load Mass
• System Specific Mass = Dry Mass/SEP (kg/kW)
• Analysis for single transit optimal transit to Mars
• Full propulsive braking for Mar Capture - no aerobraking

[Image: fusionNIAC3.png]
[Image: fusionNIAC1.png]
[Image: fusionNAIC4.png]

[Image: fusionNIAC5.png]
[Image: fusionNIAC6.png]

The Fusion Engine is a cyclically operating fusion power plant technology that will be capable of clean energy generation for base load and on-demand power.

The Fusion Engine is a 28-meter long, 3-meter high bow tie-shaped device that at both ends converts gases of deuterium and tritium (isotopes of hydrogen) into plasmoids - plasma contained by a magnetic field through a process called FRC (field-reversed configuration). It magnetically accelerates the plasmoids down long tapered tubes until they collide and compress in a central chamber wrapped by a magnetic coil that induces them to combine into helium atoms. The process also releases neutrons.

The Helion Energy Fusion Engine provides energy in two ways. Like in a fission reactor, the energy of the scattered neutrons gives off heat that ultimately drives a turbine. Helion is also developing a technique that directly converts energy to electricity. The direct conversion will provide about 70 percent of the outgoing electricity according to Kirtley.

Helion Energy new plan is to build a 50-MWe pilot of its “Fusion Engine” by 2019 after which licensees will begin building commercial models by 2022.


[Image: helionenergy.jpg]

Lawrenceville Plasma Physics

The LPP approach uses a device called a dense plasma focus (DPF) to burn aneutronic fusion fuels that make no radioactive waste, a combination LPP calls “Focus Fusion.” LPP has taken major strides towards their goal.

Net fusion energy is like a tripod, and needs three conditions to stand (or in the LPP case, get more energy out than is lost). Despite FF-1’s low cost of less than $1 million, the results LPP published showed FF-1 has achieved two out of three conditions—temperature and confinement time—needed for net fusion energy. If they were able to achieve the third net fusion energy condition, density, they could be within four years of beginning mass manufacture of 5 Megawatt electric Focus Fusion generators that would scale to meet all global energy demands at a projected cost 10 times less than coal. While we still must demonstrate full scientific feasibility, FF-1 already achieves well over 100 billion fusion reactions in a few microseconds.

Lawrenceville Plasma Physics - Progress and specific issues to be resolved to boost plasma density by 100 and then to increase current

In the past month’s experiments, LPP’s research team has demonstrated the near tripling of ion density in the plasmoid to 8x10^19 ions/cc, or 0.27 mg/cc. At the same time, fusion energy output has moved up, with the best three shot average increasing 50% to one sixth of a joule of energy. While the yield and density improvements show we are moving in the right direction, they are still well below what the LPP team theoretically expects for our present peak current of 1.1 MA. Yield is low by a factor of 10 and density by a factor of nearly 100. If we can get yield up to our theoretical expectation of over 1 joule, our scaling calculations tell us that with higher current we can make it all the way to the 30,000 J that we need to demonstrate scientific feasibility. We’ve long concluded that this gap between theory and results is caused by the “early beam phenomenon” which is itself a symptom of the current sheath splitting in two, feeding only half its power into the plasmoid. In the next shot series, we will replace the washers with indium wire which has worked elsewhere on our electrodes to entirely eliminate even the tiniest arcing. We will also silver-plate the cathode rods as we have done with the anode. Over the longer run, we are looking at ways to have a single-piece cathode made out of tungsten or tungsten-copper in order to eliminate the rod-plate joint altogether. These steps should get rid of the filament disruption for good, enabling results to catch up with theory.

[Image: LPP1.png]
[Image: LPP_setup.jpg]

MagLIF at Sandia

Researchers at Sandia National Laboratories in Albuquerque, New Mexico, are using the lab’s Z machine, a colossal electric pulse generator capable of producing currents of tens of millions of amperes, say they have detected significant numbers of neutrons—byproducts of fusion reactions—coming from the experiment.

For enough reactions to take place, the hydrogen nuclei must collide at velocities of up to 1000 kilometers per second (km/s), and that requires heating them to more than 50 million degrees Celsius.

They need to boost neutron production by 10,000 times to get to breakeven.


More Background

I just do not always cover all the background every time I update one of the projects that I am tracking. They are all available from the tags and by searching my site.

Dozens of articles on Fusion going back about 8 years.

My articles for more background on the overall general fusion work
http://nextbigfuture.com/2009/09/general-fusion-will-leverage-computer.html


http://nextbigfuture.com/2009/07/general-fusion-technical-challenge-of.html


http://nextbigfuture.com/2008/12/general-fusion-video-and-pictures.html

http://nextbigfuture.com/2011/11/npr-interviews-michel-laberge-of.html

Tracking progress on General Fusion and other approaches

http://nextbigfuture.com/2011/10/general-fusion-getting-inspections-from.html

http://nextbigfuture.com/2011/08/progress-at-general-fusion.html

http://nextbigfuture.com/2011/08/helion-energy-general-fusion-and-tri.html

http://nextbigfuture.com/2011/06/helion-energy-and-general-fusion-in.html

http://nextbigfuture.com/2011/05/general-fusion-raises-more-money-and.html

http://nextbigfuture.com/2011/01/magnetized-target-fusion.html

http://nextbigfuture.com/2010/07/multiple-promising-nuclear-fusion.html

http://nextbigfuture.com/2010/03/cosmic-log-covers-iec-fusion-general.html

http://nextbigfuture.com/2010/01/summarizing-how-better-nuclear-fission.html


http://nextbigfuture.com/2009/07/general-fusion-raises-usd9-million.html


http://nextbigfuture.com/2009/06/general-fusion-was-awarded-c139-million.html

http://nextbigfuture.com/2009/03/general-fusion-research-update.html

http://nextbigfuture.com/2008/12/general-fusion-almost-has-second-round.html

http://nextbigfuture.com/2008/12/update-on-general-fusion-steam-punk.html
On a satellite I ride. Nothing down below can hide.
Reply
#41
Tri Alpha Energy reportedly makes important breakthrough in developing fusion reactor
August 26, 2015 by Bob Yirka


[Image: 55ddb55c5a7fd.jpg]
(Phys.org)—Science Magazine is reporting that physicists working at Tri Alpha Energy in Los Angeles have succeeded in building a device that held a ball of superheated hydrogen and boron for five milliseconds, longer than any other effort before, offering proof that it is possible to hold such gases in a steady state. The development represents a possible breakthrough in the development of a fusion reactor as the process involved is a move towards developing technology that can hold gases at temperatures high enough to sustain a fusion reaction.

A true fusion reactor, if one can be built, would of course represent a transformative event in human history—it is believed such reactors could provide the energy needed to relieve our reliance on coal, and nuclear fission. The idea is relatively simple—it is the implementation that has proven to be difficult. A gas is heated to a temperature high enough so that its atoms lose their electrons creating a mass of ions and electrons, i.e. plasma. If those ions run into each other with enough force, they fuse together, causing some of their mass to be converted into energy (as happens in the sun). The trick is in heating the gas to such a high temperature that no known material could hold it—to get around that, researchers have two main possibilities, cause an implosion that occurs so quickly that the material holding it would not be impacted, or use a magnetic field—the researchers at Tri Alpha are reportedly using the second approach, but with a twist, they put magnets around a cigar shaped field-reversed configuration that allows for firing angled plasma beams at one another and hemmed in the results with magnets and electrodes. Using this approach, they were reportedly able to heat the gas up to 10 million degrees Celsius and only stopped the machine because they ran out of fuel.






While impressive, the achievement by the team in California still falls far short of the 3 billion degrees Celsius temperature needed to achieve a fusion reaction—the team next plans to tear down the machine, dubbed C-2U and replace it with an upgraded model which they believe will allow them to achieve a ten-fold increase in temperature.

Explore further: Overturned scientific explanation may be good news for nuclear fusion

Read more at: http://phys.org/news/2015-08-tri-alpha-e...t.html#jCp

[/url] [url=http://phys.org/news/2015-08-tri-alpha-energy-reportedly-important.html#]


Antimatter catches a wave: Accelerating positrons with plasma is a step toward smaller, cheaper particle colliders

August 26, 2015

[Image: antimatterca.jpg]
Simulation of high-energy positron acceleration in an ionized gas, or plasma -- a new method that could help power next-generation particle colliders. The image shows the formation of a high-density plasma (green/orange color) around a positron beam moving from the bottom right to the top left. Plasma electrons pass by the positron beam on wave-like trajectories (lines) Credit: W. An/UCLA


A study led by researchers from the U.S. Department of Energy's (DOE) SLAC National Accelerator Laboratory and the University of California, Los Angeles has demonstrated a new, efficient way to accelerate positrons, the antimatter opposites of electrons. The method may help boost the energy and shrink the size of future linear particle colliders - powerful accelerators that could be used to unravel the properties of nature's fundamental building blocks.


The scientists had previously shown that boosting the energy of charged particles by having them "surf" a wave of ionized gas, or plasma, works well for electrons. While this method by itself could lead to smaller accelerators, electrons are only half the equation for future colliders. Now the researchers have hit another milestone by applying the technique to positrons at SLAC's Facility for Advanced Accelerator Experimental Tests (FACET), a DOE Office of Science User Facility.
"Together with our previous achievement, the new study is a very important step toward making smaller, less expensive next-generation electron-positron colliders," said SLAC's Mark Hogan, co-author of the study published today in Nature. "FACET is the only place in the world where we can accelerate positrons and electrons with this method."


SLAC Director Chi-Chang Kao said, "Our researchers have played an instrumental role in advancing the field of plasma-based accelerators since the 1990s. The recent results are a major accomplishment for the lab, which continues to take accelerator science and technology to the next level."
Shrinking Particle Colliders
Researchers study matter's fundamental components and the forces between them by smashing highly energetic particle beams into one another. Collisions between electrons and positrons are especially appealing, because unlike the protons being collided at CERN's Large Hadron Collider - where the Higgs boson was discovered in 2012 - these particles aren't made of smaller constituent parts.
"These collisions are simpler and easier to study," said SLAC's Michael Peskin, a theoretical physicist not involved in the study. "Also, new, exotic particles would be produced at roughly the same rate as known particles; at the LHC they are a billion times more rare."


[Image: 1-antimatterca.jpg]
Future particle colliders will require highly efficient acceleration methods for both electrons and positrons. Plasma wakefield acceleration of both particle types, as shown in this simulation, could lead to smaller and more powerful colliders than today's machines. Credit: F. Tsung/W. An/UCLA/SLAC National Accelerator Laboratory

However, current technology to build electron-positron colliders for next-generation experiments would require accelerators that are tens of kilometers long. Plasma wakefield acceleration is one way researchers hope to build shorter, more economical accelerators.

Previous work showed that the method works efficiently for electrons: When one of FACET's tightly focused bundles of electrons enters an ionized gas, it creates a plasma "wake" that researchers use to accelerate a trailing second electron bunch.
Creating a Plasma Wake for Antimatter
For positrons - the other required particle ingredient for electron-positron colliders - plasma wakefield acceleration is much more challenging. In fact, many scientists believed that no matter where a trailing positron bunch was placed in a wake, it would lose its compact, focused shape or even slow down.
"Our key breakthrough was to find a new regime that lets us accelerate positrons in plasmas efficiently," said study co-author Chandrashekhar Joshi from UCLA.
Instead of using two separate particle bunches - one to create a wake and the other to surf it - the team discovered that a single positron bunch can interact with the plasma in such a way that the front of it generates a wake that both accelerates and focuses its trailing end. This occurs after the positrons have traveled about four inches through the plasma.

[Image: 2-antimatterca.jpg]
Computer simulations of the interaction of electrons (left, red areas) and positrons (right, red areas) with a plasma. The approximate locations of tightly packed bundles of particles, or bunches, are within the dashed lines. Left: For electrons, a drive bunch (on the right) generates a plasma wake (white area) on which a trailing electron bunch (on the left) gains energy. Right: For positrons, a single bunch can interact with the plasma in such a way that the front of the bunch generates a wake that accelerates the bunch tail. Credit: W. An/UCLA

"In this stable state, about 1 billion positrons gained 5 billion electronvolts of energy over a short distance of only 1.3 meters," said former SLAC researcher Sébastien Corde, the study's first author, who is now at the Ecole Polytechnique in France. "They also did so very efficiently and uniformly, resulting in an accelerated bunch with a well-defined energy."
Looking into the Future
All of these properties are important qualities for particle beams in accelerators. In the next step, the team will look to further improve their experiment.
"We performed simulations to understand how the stable state was created," said co-author Warren Mori of UCLA. "Based on this understanding, we can now use simulations to look for ways of exciting suitable wakes in an improved, more controlled way. This will lead to ideas for future experiments."
Although plasma-based particle colliders will not be built in the near future, the method could be used to upgrade existing accelerators much sooner.
"It's conceivable to boost the performance of linear accelerators by adding a very short plasma accelerator at the end," Corde said. "This would multiply the accelerator's energy without making the entire structure significantly longer."
[Image: 1x1.gif] Explore further: SLAC's newest facility kicks off user run
More information: Multi-gigaelectronvolt acceleration of positrons in a self-loaded plasma wakefield, Nature, DOI: 10.1038/nature14890
Journal reference: Nature [Image: img-dot.gif] [Image: img-dot.gif]
Provided by: SLAC National Accelerator Laboratory


Read more at: http://phys.org/news/2015-08-antimatter-...r.html#jCp


[Image: 1x1.gif]
Along the vines of the Vineyard.
With a forked tongue the snake singsss...
Reply
#42
Does anyone have an update on this?
Reply
#43
...
related work a year ago

https://www.sciencedaily.com/releases/20...133207.htm
SLAC National Accelerator Laboratory
...
Reply
#44
Lasers Used to Create Negative Mass Particles

All the matter you’ve ever interacted with has mass, and as such it obeys the standard laws of motion as enunciated by Newton centuries ago. If you push something, it moves in the direction you push it. However, matter with negative mass would do the opposite. It sounds like wacky science fiction, but it’s close to becoming reality. Researchers at the University of Rochester have worked out a way to create negative mass particles using, what else, lasers. Is there anything lasers can’t do?

Physicists have been chasing real-world examples of negative mass for years, but it’s all been theoretical until recently. The math predicted negative mass was possible, though. In the classic physics equation for force (F = ma), all three variables are positive. However, if you make mass a negative number, the resulting force is negative as well. Thus, pushing an object with negative mass causes it to accelerate toward you. Try to pull it toward you and it’ll move away. It’s a real mind-bender.

The University of Rochester team says the new experiment published in Nature Optics is the first example of creating particles that exhibit negative mass. In the experiment, a laser bounces off mirrors within a small optical cavity. The key to generating negative mass particles was the use of an ultra-thin semiconductor made of molybdenum diselenide. The photos on the laser and excitons in the semiconductor then interact to produce the negative mass effects.

[Image: warp_drive_starship-640x353.jpeg]



We’re getting into serious condensed matter physics here, but the gist is that an exciton is a bound quantum state of an electron and an “electron hole” where an electron could exist in the semiconductor. The end result of this interaction is a new quasiparticle called a polariton that has negative mass. The researchers verified negative mass qualities in the experiment, but we’re a long way from harnessing that power to actually do something.

Lead author Nick Vamivakas describes a way negative mass particles could be employed in, you guessed it, lasers. Applying an electrical field across a device with negative mass particles could allow researchers to apply push and pull forces with much more efficiency. With polaritons, it’s possible to generate a laser with much lower energy input. Taking things to a more sci-fi place, negative mass is also one of the requirements for the theoretical Alcubierre warp drive. Of course, we’re a long way from figuring out how to make that much negative mass.


https://www.extremetech.com/extreme/2616...-particles
Reply
#45
...
As soon as I started reading that, I suspected it could be used as advanced propulsion.
Then they mentioned Alcubierre warp drive,
as a function of this negative mass particle concept.
These dandy new descritives they use are amusing:


Quote:The end result of this interaction,
is a new quasi Smoke particle called a polariton Whip that has negative mass.


It fatigues me to think about traveling to distant planets in confined spaceships,
through wormholes with space warp drives.
What kind of creature comfort goes along with this technology?
There must be a first class section,
and it must be expensive.
or does everybody just go into the hibernation tubes for the voyage?
Goofy.
The Stargate concept is more appealing in the Hollywood sense.
Walk through the energy plasma film at the gate entrance,
right onto the surface of another paradise planet.
No TSA,
no flight delays due to bad weather.
Staying at the New Hotel California.
I feel sorry for generations of humans as space pilgrims colonizing the moon and such.

no fresh air
no fresh water
no fresh food

I feel blessed now to eat fresh salmon and drink good coffee and beer.

Cuppa pseudo moon Jo to go please,
as he went off to work in the Deuterium processing factory on the moon.


Quote:The key to generating negative mass particles,
was the use of an ultra-thin semiconductor,
made of molybdenum diselenide.



Nonono

sounds as bad as fluoride, or the mercury in my tuna fish sammich.

Stargate delivery pizza ... I'll pass on the Chinese lunar base GMO restaurant noodles.

Alcubierre warp drive?
I'll catch a ride on an Angel someday hopefully.

Sitting on a cornflake,
waiting for the Stargate to open.

...
Reply


Forum Jump:


Users browsing this thread: 1 Guest(s)